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Autophagy in Hepatic Fibrosis
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Hepatic fibrosis is a leading cause of morbidity and mortality worldwide. Hepatic fibrosis is usually associated with chronic liver
diseases caused by infection, drugs, metabolic disorders, or autoimmune imbalances. Effective clinical therapies are still lacking.
Autophagy is a cellular process that degrades damaged organelles or protein aggregation, which participates in many pathological
processes including liver diseases. Autophagy participates in hepatic fibrosis by activating hepatic stellate cells and may participate
as well through influencing other fibrogenic cells. Besides that, autophagy can induce some liver diseases to develop while it may
play a protective role in hepatocellular abnormal aggregates related liver diseases and reduces fibrosis. With a better understanding
of the potential effects of autophagy on hepatic fibrosis, targeting autophagymight be a novel therapeutic strategy for hepatic fibrosis
in the near future.

1. Introduction

Hepatic fibrosis, a leading cause of morbidity and mortality
worldwide, is usually associated with chronic liver diseases
caused by infection, drugs, metabolic disorders, or autoim-
mune imbalances. Hepatic fibrosis can develop into cirrhosis
within 1–10 years with a 7- to 10-year liver-relatedmortality of
12% to 25% [1]. Unfortunately, effective clinical therapies are
still lacking.

Hepatocytes have a dramatic regenerative capability.
Usually, the necrotic or apoptotic hepatocytes are replaced
through the replication of adjacent hepatocytes within the
lobules. However, under heavy and sustained damage, the
regenerative capability of hepatocytes will be impaired, and,
consequently, hepatic stellate cells are activated, inducing
liver fibrogenesis. Autophagy, a catabolic process by which
cells develop, differentiate, survive, and stay homeostasis
under conditions such as nutrients deprivation and hypoxia,
has been implicated in many liver diseases including viral
hepatitis, alcohol liver diseases, nonalcohol liver diseases,

acute liver injury, and alpha1-antitrypsin (AT) deficiency
related liver diseases [2–5]. As hepatic fibrosis is a common
outcome of a variety of chronic liver diseases, this review
will highlight and summarize recent progresses of the role of
autophagy in hepatic fibrosis.

2. Autophagy

Autophagy, a metabolic process that eukaryotic cells digest
their own organelles and long-lived proteins, is critical for
development, differentiation, and homeostasis. It is the only
way that “old” or “broken” organelles degrade [6, 7]. As a
necessary process to maintain cell survival during starvation
and damage, the proteins involved in autophagy are highly
conserved from yeast to mammalian.

In the initial stage, a membranal structure named
phagophore,will extend and sequester cytoplasmic organelles
which includes mitochondria, endoplasmic reticulum, and
ribosomes. After that, the edges of themembrane fuse to form
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a double-deck membranal spherical structure, autophago-
some. Later, it fuses with lysosome and delivers the inner
membrane and its inclusion to lysosome. The fusion of
autophagosome and lysosome is called autolysosome, and it is
where the cargoes are degraded, and then hydrolyzed prod-
ucts are transported to plasma for cellular energy recycling
[8]. The deficiency or the mutation of related genes leads
to abnormal protein aggregates, immunity deficiency, and
oncogenesis. PI3K/Akt/mTOR signaling pathway is a major
contributor for autophagy. Under deprivation of nutrients or
growth factors mTOR signaling is inhibited, which thereby
induces autophagy [9].Moreover, while nutrients and growth
factors are abundant, activation of mTORC1 suppresses the
ULK1 complex and autophagy and promotes cell growth and
metabolic activity. In mammal, class III PI3K can stimulate
autophagy and form complexes with p150 and Beclin1, which
is regulated by many molecules including UVRAG, Bif-1,
Rubicon, and Ambra1 [10]. However, class I PI3K inhibits
autophagy by activating mTOR and PKB [11]. Autophagy is
also regulated by Ras/PKA signaling pathway in addition to
PI3K/Akt/mTOR signaling pathway. Inactivation of PKAby a
dominant negative allele of Ras2 can induce autophagy even
under nutrient-rich conditions [12].

As a cellular housekeeper, autophagy eliminates defective
proteins and organelles, removes intracellular pathogens,
and also prevents abnormal proteins from accumulating.
Therefore, autophagy plays an active role in the pathology
of many diseases, including cancer [13], infection [14, 15],
neurodegeneration [16], aging [17], and cardiovascular dis-
eases [18]. In neurodegenerative diseases, the accumulation
of autophagosome is observed, which is resulted from the
inhibition of the fuse between autophagosome and lyso-
some [16]. Loss of autophagy induces the accumulation
of abnormal proteins, contributing to neurodegenerative
diseases including Alzheimer’s disease, transmissible spongi-
form encephalopathies, Parkinson’s disease, andHuntington’s
disease [16, 19, 20]. Similarly, Danon diseases, characterized
by cardiomyopathy and myopathy, are associated with the
failure of autophagosome to fuse with lysosome. Moreover,
tumor suppressor genes including PTEN, TSC1, and TSC2
that stimulate autophagy, are inhibitors of mTOR signaling
in the upstream. Conversely, mTOR-activating oncogene
products such as class I PI3K and Akt inhibit autophagy. P53,
which often mutates in human cancers, regulates autophagy
through the mTOR pathway [21, 22]. Constitutive activation
of the PI3K pathway is among the most common events in
human cancer, and the downstream kinase mTOR restricts
autophagy in response to starvation [23, 24].

3. Autophagy: An Important Player in
Tissue Fibrosis

Cystic fibrosis (CF), a genetic disease relatively occurring
more frequently in Caucasians [25–27], is clinically charac-
terized by chronic severe lung inflammation. Cystic fibrosis
transmembrane conductance regulator (CFTR) is considered
as one molecular regulator of CF [26], and a sequestration of
misfolding of CFTR has been observed in airway epithelia of

CF patients. CFTRdefection inhibits autophagy, and rescuing
autophagy could favor the clearance of the aggresomes and
attenuates inflammation in CF both in vivo and in vitro [28].
Similarly, rapamycin, an autophagy inducer, suppresses lung
inflammation and infection byBurkholderia cenocepacia [29].
In addition, azithromycin, a blocker of autophagy, leads to
mycobacterial infection in CF patients [30]. The above data
consistently supports the idea that autophagy is critically
involved in CF. Unilateral ureteral obstruction (UUO) is
a classical model of progressive renal fibrosis. Autophagy
is induced in obstructed kidney after UUO induction, and
inhibition of autophagy by 3-MA enhances tubulointerstitial
fibrosis, indicating a renoprotective role of autophagy in renal
fibrosis [31, 32]. In a TGF-beta overexpression transgenic
mouse model which exhibits widespread peritubular fibrosis,
tubular cells decomposition is induced by autophagy [33].

Being a center player in fibrosis, autophagy is involved in
almost all fibrosis related diseases within diverse organs or
systems.This review will focus on hepatic fibrosis, a common
pathological process occurring inmost chronic liver diseases.

4. Mechanisms of Hepatic Fibrosis

Hepatic fibrosis, a scarring of wounded liver, is a process
in which liver compensates its loss of parenchyma cells
through fibrogenesis. In Western societies, alcohol abuse
is the major cause of liver fibrosis [34, 35], while virus
infection especially HBV and HCV dominates in Asian and
African countries [36, 37]. Some drugs or chemicals have also
been proved to cause hepatic fibrosis. For example, chronic
hepatic inflammation and fibrogenesis have been identified
in patients who accepted long-term, low-dosage paracetamol
administration [38]. On the other hand, some chemicals
such as tetrachloromethane and N-nitrosodimethylamine
were used as well-established hepatotoxic reagents to induce
hepatic fibrosis in rodents [39, 40]. Many other etiological
factors of hepatic fibrosis have also been well-described
over the past decades, including alcohol abuse, nonalcoholic
steatohepatitis, autoimmune hepatitis, schistosomiasis, and
metabolism disorder [41, 42].

Although acute injury will also activate the process of
fibrogenesis, liver injury associatedwith chronic liver diseases
is required for significant fibrosis to accumulate. Any chronic
perturbation of hepatic homeostasis, whether visible by light
microscopy or not, may elicit the signals necessary for the
initiation of fibrogenesis [41]. Chronic liver injury, regardless
of etiology, induces liver fibrogenesis through a dynamic
and highly integrated process that leads to progressive accu-
mulation of extracellular matrix (ECM) components with
an attempt to limit hepatic damage. Sustained liver injury
activates resident hepatic stellate cells (HSCs), which are
considered as a major source of fibrogenesis though portal
fibroblast [43], bone marrow derived fibrocytes [44], and
resident hepatocytes undergoing epithelial to mesenchymal
transition [45] may also contribute to hepatic fibrogenesis
[46].

HSCs are the major cells producing ECM [47]. In normal
liver, HSCs reside in the space of Disse. Upon injury, HSCs
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Figure 1: Essential processes of hepatic fibrosis.

are activated and transdifferentiated into myofibroblast-like
cells. Activated HSCs migrate and accumulate at the sites
where tissue is impaired, producing large amount of ECM
and reducing ECM fromdegradation (Figure 1). Activation of
TGF-beta signaling [48, 49], PDGF, or other growth factors
[50, 51] and oxidative stress [52] have been identified to
contribute to the activation of HSCs. Activation of HSCs is
composed of two phases: initiation and perpetuation [53].
The most informative feature that HSCs are undergoing
initiation phase is the transformation from LD-rich cells
to myofibroblast-like cells [54], which is accompanied with
increased autophagy flux [55]. This morphological change
suggests that autophagy may function in the process of HSCs
activation associated with LDs mediated pathway.

5. Autophagy in Fibrogenic Cells

HSCs are well-known asmajor fibrogenic cells in liver and are
filled with cytoplasmic LDs before being activated. LDs are
neutral lipid storage organelles that are found in all organisms
from bacteria to human [56]. As LDs are internal nutrient
stores for use during starvation, their contents are accessed
primarily through the actions of specific enzymes, such as
hormone-sensitive lipase. LC3 conjugation system, which
is important in the process of autophagy [57], is critically
involved in the formation and degradation of LDs.

Quiescent HSCs are filled with cytoplasmic LDs con-
taining retinyl esters (especially retinyl palmitate) and tri-
acylglycerols, accounting for more than 70% of their lipid
content [58, 59]. Upon activation of the HSCs, LDs reduce
in size while increase in number in the initial phase, and
LDsmigrate to cellular extensions before they disappear [60].
Along with the switch from LDs-rich cells to myofibroblast-
like cells, autophagy flux is upregulated [55]. It has been
demonstrated that cellular lipids stored as triglycerides in
LDs would be hydrolysed into fatty acids for energy [61].
Inhibition of autophagy increases triglyceride storage in LDs
[62]. Autophagy may supply energy for activation of HSCs

by delivering triglyceride and other components in LDs from
autophagosomes to lysosomes for degradation.

The number and size of LDs are consistently increased in
HSCs treated with autophagy inhibitor 3MA [63] or knocked
out the autophagy related gene Atg5. Moreover, the rate of
𝛽-oxidation, which indicates the levels of FFA generated by
triglyceride hydrolysis [64], increases during lipid loading,
but to a much lesser extent in cells with inhibited autophagy
[62, 65]. Based on these evidences, we could hypothesize that
autophagy may be the energy supplier for HSCs activation
and lipids (mainly triglyceride) contained in LDs as fuel [66].
A recent study has showed that nilotinib could induce cell
death of HSCs, and inhibiting apoptosis alone did not reduce
HSCs death because autophagic cell death was exacerbated
[67]. This effect was only found in activated HSCs but not
quiescentHSCs, indicating that autophagymay have different
function in activated HSCs and quiescent HSCs. Moreover,
3-MA induced autophagy inhibitory was reported to cause
an arrest in the G2 phase of HSC-T6 cells, a rat HSC line,
and thereafter inhibited the proliferation of HSC-T6 cell [68],
suggesting that autophagy is required for HSCs proliferation
besides affecting LDs metabolism as described elsewhere.

Resident HSCs are not the only source of myofibroblast
which contributes to fibrogenesis in liver. To date, several
other types of cells have been proved to be involved in hepatic
fibrosis, including portal fibroblasts, circulating fibrocytes,
bonemarrow derived fibrocytes, and hepatocytes via an EMT
(epithelial-mesenchymal transition) program. Although rel-
atively little information is known about autophagy and
EMT in hepatocytes, other studies in other diseases might
also provide some implications. Recent studies have found
that DEDD, a novel tumor repressor, could activate selective
autophagy and thereafter induce the degradation of Snail
and Twist, two master regulators of EMT in human breast
cancer [69, 70]. Another study found that starvation-induced
autophagy could induce the expression of EMT markers
and invasion in hepatic carcinoma cells through a TGF-
𝛽/Smad3 signaling-dependent manner, and the inhibitory of
autophagy in the starvation could result in the suppression of
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EMT [71]. These results give potential indirect evidence that
autophagy might also have potential effects on EMT of hepa-
tocytes and thus participates in the process of hepatic fibrosis.

6. Autophagy, Associates in Crime?

Not only can autophagy act as an energy fueler for HSCs
activation, it can as well induce some liver diseases to develop
inducing hepatic fibrogenesis.

Viral hepatitis, a world-widespread public health con-
cern, can be caused by several viruses. Among them, hep-
atitis B virus (HBV) and hepatitis C virus (HCV) are two
major types. HCV is a single, positive-stranded membrane-
enveloped RNA virus, belonging to the Hepacivirus genus
in the Flaviviridae family. HCV infection induces autophagy
despite viral genotype. Autophagy is increased in cells har-
boring HCV strains including H77 (genotype 1a), Con1
(genotype 1b), and JFH1 (genotype 2a) [72–74], which is
associated with endoplasmic reticulum (ER) stress [74]. HCV
induces early phase of autophagy in hepatocytes, with the
accumulation of autophagosomes and the upregulation of
the ratio of LC3-II to LC3-I [72, 74]. In addition, HCV uses
autophagy pathway for its own replication. Virus-induced
unfolded protein response (UPR) may activate autophagy to
support the virus life cycle. As virus proliferates, the expres-
sion of HCV core and nonstructural proteins induce HSCs
to proliferate and inflammatory cytokines to be secreted.
In addition, hepatocytes harboring and replicating HCV in
culture produce fibrogenic stimuli towards HSCs [75, 76].
Interestingly, autophagic protein are only required at the
beginning phase at which incoming HCV RNA transfected
to the cell translation apparatus, but the HCV RNA was
observed not collocated with HCV core and nonstructural
proteins. Downregulation of autophagic proteins 10 days after
transduction does not affect HCV replication, suggesting that
autophagic proteins are not necessary for HCV replication
once established [73]. On the other hand, HCV infection
has been suggested to impair the late stage of autophagic
pathway by inhibiting the maturation of autolysosome, as the
observed extensive aggregation long-lived protein p62 and
the insufficient mature autophagic vacuoles in HCV harbor-
ing cells [74]. Besides HCV, autophagy is required for HBV
replication. Inhibition of autophagy with 3-methyladenine
(3-MA) markedly inhibited the production of HBV [77].
HBV induced autophagy is associated with HBV x protein
(HBx) and HBV small surface protein (SHBs) [77, 78].
However, how HBV uses autophagy for its own replication
remains unclear.

Primary biliary cirrhosis (PBC) is a form of liver disease
that over time can lead to liver cirrhosis [79]. LC3, an
autophagy maker, is more frequently in bile ductular cells
of both early stage and advanced stage of PBC patients than
that in control groups. LC3 is significantly correlated with
the expression of cellular senescence makers, suggesting that
autophagy may be involved in cellular senescence in PBC.
Given the idea that cellular senescence is involved in ductular
reaction (DR) in primary biliary cirrhosis [80], autophagy
may be a novel player in PBC. However, it is unclear whether

this upregulated autophagy is protective or harmful, and
studies revealing the underlying molecular mechanism are
also scarce.

7. Autophagy May Protect Hepatocellular
Abnormal Aggregates Related Liver Diseases
and Reduce Fibrosis

Besides the activation of HSCs, chronic hepatocyte injury
is another key step for hepatic fibrogenesis. It has been
demonstrated that autophagy was involved in many liver
diseases with abnormal hepatocellular aggregates, such as
alcohol/nonalcohol steatohepatitis and alpha1-antitrypsin
(AT) deficiency liver disease. Autophagy is considered as
a protective factor that overcomes hepatocellular protein
aggregation burdens, which has been observed in the liver
diseases above and these burdens, like AT Z protein, may
induce liver injury.

AT deficiency, caused by homozygosity for theATmutant
Z gene (ATZ), is clinically characterized by liver disease
and early-onset emphysema, which affects one in 2000–5000
individuals [81]. AT matures in the endoplasmic reticulum
(ER), while in the classical form of AT deficiency, a point
mutation in AT alters the folding of a liver-derived secretory
glycoprotein in hepatocytes. Polymers of ATZ, those being
normally cleared from the ER via the autophagic pathway,
have been identified by electron microscopy as diastase-
resistant inclusions within the ER of hepatocytes [82]. When
polymers of ATZ accumulate in the ER, they can be degraded
by two pathways, the proteasome and autophagy pathways
[83]. The former probably aims at the soluble forms of
ATZ [84], while the latter may focus on the polymerized
forms of ATZ [85]. As the basic or impaired autophagy
is not able to match the upregulation of ATZ aggregates
formation, ATZ is prone to aggregate in ER, leading to
subsequent ER stress, hepatocytes death, and liver injury
[86]. In AT deficiency patients and ATZ transgenic animal
model, autophagosome has been reported to be increased in
number [85]. In human hepatoma cell lines and fibroblast
cell lines overexpressing ATZ, an increased colocation of
autophagosomes and ATZ aggregates has been observed.
Meanwhile, inhibition of autophagy in these cell lines leads
to the accumulation of misfolded ATZ in ER and worsens
liver injury [87]. Carbamazepine, an autophagy-enhancing
drug, promotes the degradation of ATZ polymers and then
reduces the level of hepatic fibrosis [88]. In addition, liver-
directed gene transfer of transcription factor EB (TFEB),
a major regulator of lysosomal function and autophagy,
prevents hepatocytes from apoptosis and fibrogenesis [89].
Moreover, upregulated autophagy by rapamycin effectively
reducesATZ aggregation in hepatocyteswith the reduction of
hepatocellular injury makers and the level of hepatic fibrosis
[90].These findings suggest that autophagy plays a protective
role in the pathology of AT deficiency liver disease and
reduces hepatic fibrosis.

Chronic alcohol abuse leads to hepatic lesions such as
alcoholic hepatitis, hepatic fibrosis, and cirrhosis. Mallory-
Denk bodies (MDBs), found in the livers of alcohol hepatitis
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and alcohol cirrhosis patients [91, 92], are mainly made
up of keratins 8 and 18 (K8/18), ubiquitin, and p62 [92,
93]. Autophagy is involved in the elimination of MDBs
in hepatocyte, and the accumulation of MDBs may be an
evidence of the decrease of autophagy in alcoholic hepatitis
[94]. In addition, in the hepatocytes of Atg7-deficient mice,
MDB-like protein aggregates are observed [95], indicating
that autophagy deficiency may lead to abnormal protein
aggregates formation and liver injury in alcoholic hepatitis.
Autophagy inhibition is able to increase steatosis in animal
models of alcohol induced hepatic injury [96]. MDBs are
not limited in alcoholic hepatitis and are now believed as
a recognized feature of many other liver diseases including
nonalcoholic steatohepatitis (NASH). NASH is characterized
by abnormal lipid metabolism and the accumulation of TGs
storage in LDs of hepatocytes, and this accumulation of lipids
contributes to the initiation of NASH. By inducing starvation
in vivo, mice livers show autophagic maker LC3 associated
with LDs and the presence of lipid in autophagosomes and
lysosomes, indicating that autophagy may be an important
pathway that mediates lipo-degradation [65]. Low levels of
autophagy or impaired autophagic fluxmay be a potential risk
factor that exacerbates steatosis and the subsequent fibrosis
by promoting both the initial lipid accumulation and the
progression to cellular injury [97].

In an autophagy-deficient yeast chain, secretory protein
shows stabilization of aggregated ER form, indicating that
autophagic pathway is a conservative process to remove
abnormal aggregation from ER [98]. However, how these
misfolded proteins are recognized and removed by the
autophagy pathway is unclear [99] though unfolded protein
response (UPR) pathway, JNK pathway, and PERK path-
way have been reported to be involved in that [100–103].
Autophagic target p62 can be detected in both MBs, and it
aggregates in theATZ liver, suggesting that it can be subjected
to autophagic removal. P62 molecule is common in these
inclusion bodies and it can be a bridge for misfolded proteins
and autophagosome by binding to misfolded proteins and
LC3 on autophagosome’s membrane [104]. This was further
confirmed by studies in ATZ liver diseases [88, 89].

8. Conclusion

Hepatic fibrosis is a common pathological process that
is involved in most chronic liver diseases. The advanced
stage of hepatic fibrosis named cirrhosis is highly deadly
and is often accomplished with multiple complications and
hepatic function disorders. Recent studies have demonstrated
that hepatic fibrosis was reversible, suggesting that therapy
targeting hepatic fibrogenesis is feasible. Autophagy induces
the activation ofHSCs, a key process for the genesis of hepatic
fibrosis. In addition, autophagy plays diverse roles in liver
diseases that cause hepatocellular damage and subsequent
fibrogenesis. However, the profibrosis effect of autophagy is
mainly carried out in resident HSCs; according to recent
studies, seldom evidences were found that autophagy is
regulated in other fibrogenic cells. Moreover, as autophagy is
protective in most cells, nonspecific antiautophagy therapies

may result in many unwanted effects. Thus, antiautophagy
regents with highly specific affinity to HSCs may be novel
therapeutic strategy for hepatic fibrosis in the near future.
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